A basis for the implicit representation of planar rational cubic Bézier curves

نویسنده

  • Oliver Joseph David Barrowclough
چکیده

We present an approach to finding the implicit equation of a planar rational parametric cubic curve, by defining a new basis for the representation. The basis, which contains only four cubic bivariate polynomials, is defined in terms of the Bézier control points of the curve. An explicit formula for the coefficients of the implicit curve is given. Moreover, these coefficients lead to simple expressions which describe aspects of the geometric behaviour of the curve. In particular, we present an explicit barycentric formula for the position of the double point, in terms of the Bézier control points of the curve. We also give conditions for when an unwanted singularity occurs in the region of interest. Special cases in which the method fails, such as when three of the control points are collinear, or when two points coincide, will be discussed separately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

Certified approximation of parametric space curves with cubic B-spline curves

Approximating complex curves with simple parametric curves is widely used in CAGD, CG, and CNC. This paper presents an algorithm to compute a certified approximation to a given parametric space curve with cubic B-spline curves. By certified, we mean that the approximation can approximate the given curve to any given precision and preserve the geometric features of the given curve such as the to...

متن کامل

Shape Control of Cubic H - Bézier Curve by Moving Control Point ?

This paper considers the shape control of the cubic H-Bézier curve, which can represent hyperbolas and catenaries accurately. We fix all the control points while let one vary. The locus of the moving control point that yields a cusp on the cubic H-Bézier curve is a planar curve; The tangent surface of the planar curve is the locus of the positions of the moving control point that yield inflecti...

متن کامل

Higher order Bézier circles

Rational Bezier and B-spline representations of circles have been heavily publicized. However, all the literature assumes the rational Bezier segments in the homogeneous space are both planar and (equivalent to) quadratic. This creates the illusion that circles can only be achieved by planar and quadratic curves. In this paper we show circles that are formed by higher order rational Bezier curv...

متن کامل

Rational cubic spirals

We consider the problem of finding parametric rational Bézier cubic spirals (planar curves of monotonic curvature) that interpolate end conditions consisting of positions, tangents and curvatures. Rational cubics give more design flexibility than polynomial cubics for creating spirals, making them suitable for many applications. The problem is formulated to enable the numerical robustness and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2014